Bending strain engineering in quantum spin hall system for controlling spin currents
نویسندگان
چکیده
Quantum spin Hall system can exhibit exotic spin transport phenomena, mediated by its topological edge states. Here the concept of bending strain engineering to tune the spin transport properties of a quantum spin Hall system is demonstrated. We show that bending strain can be used to control the spin orientation of counter-propagating edge states of a quantum spin system to generate a non-zero spin current. This physics mechanism can be applied to effectively tune the spin current and pure spin current decoupled from charge current in a quantum spin Hall system by control of its bending curvature. Furthermore, the curved quantum spin Hall system can be achieved by the concept of topological nanomechanical architecture in a controllable way, as demonstrated by the material example of Bi/Cl/Si(111) nanofilm. This concept of bending strain engineering of spins via topological nanomechanical architecture affords a promising route towards the realization of topological nano-mechanospintronics.
منابع مشابه
Optical studies of ballistic currents in semiconductors [Invited]
We present a summary of recent studies of ballistic currents using nonlinear optical techniques. Quantum interference between oneand two-photon absorption pathways is used to inject and control ballistic currents in GaAs samples. With this, a pure charge current, pure spin current, or spin-polarized charge current can be injected by changing the polarization configuration of the two pump pulses...
متن کاملDissipationless spin - current between Heisenberg ferromag - nets with spin - orbit coupling
– A system exhibiting multiple simultaneously broken symmetries offers the opportunity to influence physical phenomena such as tunneling currents by means of external control parameters. Time-reversal symmetry and inversion symmetry are both absent in ferromag-netic metals with substantial spin-orbit coupling. We here study transport of spin in a system consisting of two ferromagnets with spin-...
متن کاملQuantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls
The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...
متن کاملAnomalous Hall response in two-dimensional topological insulators due to the Stark effect
It is shown that the presence of matrix dipole moments induced by external electric fields can modify the Hall response in two-dimensional topological insulators. In the case of the quantum anomalous Hall effect the induced transverse currents acquire an extra term, being proportional to the Hall conductance and the time derivative of the applied electric field. In the case of the quantum spin ...
متن کاملWhat can we learn about the dynamics of transported spins by measuring shot noise in spin - orbit - coupled nanostructures ?
We review recent studies of the shot noise of spin-polarized charge currents and pure spin currents in multiterminal semiconductor nanostructures, while focusing on the effects brought by intrinsic Rashba spin-orbit (SO) coupling and/or extrinsic SO scattering off impurities. By generalizing the scattering theory of quantum shot noise to include the full spin-density matrix of electrons injecte...
متن کامل